Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype.
نویسندگان
چکیده
Toxin-antitoxin systems are ubiquitous and have been implicated in persistence, the multidrug tolerance of bacteria, biofilms, and, by extension, most chronic infections. However, their purpose, apparent redundancy, and coordination remain topics of debate. Our model relates molecular mechanisms to population dynamics for a large class of toxin-antitoxin systems and suggests answers to several of the open questions. The generic architecture of toxin-antitoxin systems provides the potential for bistability, and even when the systems do not exhibit bistability alone, they can be coupled to create a strongly bistable, hysteretic switch between normal and toxic states. Stochastic fluctuations can spontaneously switch the system to the toxic state, creating a heterogeneous population of growing and nongrowing cells, or persisters, that exist under normal conditions, rather than as an induced response. Multiple toxin-antitoxin systems can be cooperatively marshaled for greater effect, with the dilution determined by growth rate serving as the coordinating signal. The model predicts and elucidates experimental results that show a characteristic correlation between persister frequency and the number of toxin-antitoxin systems.
منابع مشابه
Persister cells formation and expression of type II Toxin-Antitoxin system genes in Brucella melitensis (16M) and Brucella abortus (B19)
Background & Objective: Persister cells are defined as a subpopulation of bacteria that are capable of reducing their metabolism and switching to dormancy in stress conditions. Persister cells formation has been attributed to numerous mechanisms, including stringent response and Toxin-Antitoxin (TA) systems. This study aimed to investigate the hypothetical role of TA systems in...
متن کاملMechanisms for Differential Protein Production in Toxin–Antitoxin Systems
Toxin-antitoxin (TA) systems are key regulators of bacterial persistence, a multidrug-tolerant state found in bacterial species that is a major contributing factor to the growing human health crisis of antibiotic resistance. Type II TA systems consist of two proteins, a toxin and an antitoxin; the toxin is neutralized when they form a complex. The ratio of antitoxin to toxin is significantly gr...
متن کاملMolecular Detection of Type II Toxin-Antitoxin Systems and their Association with Antibiotic Resistance and Biofilm Formation in Clinical Acinetobacter baumannii Isolates of Burn Patients
Background and purpose: Burn wounds are a good host for infections. Acinetobacter baumannii is an opportunistic bacterium in patients with burn infections. Toxin-antitoxin systems (TAS) are genetic elements that are essential for antibiotic resistance and biofilm formation in bacteria, including higBA and relBE TA systems. The present study aimed to investigate the frequency of higBA and relBE...
متن کاملSynchronized switching of multiple toxin–antitoxin modules by (p)ppGpp fluctuation
Toxin-antitoxin (TA) loci are widespread in bacteria including important pathogenic species. Recent studies suggest that TA systems play a key role in persister formation. However, the persistence phenotype shows only weak dependence on the number of TA systems, i.e. they are functionally redundant. We use a mathematical model to investigate the interaction of multiple TA systems in the switchi...
متن کاملA Toxin Involved in Salmonella Persistence Regulates Its Activity by Acetylating Its Cognate Antitoxin, a Modification Reversed by CobB Sirtuin Deacetylase
Bacterial toxin-antitoxin systems trigger the onset of a persister state by inhibiting essential cellular processes. The TacT toxin of Salmonella enterica is known to induce a persister state in macrophages through the acetylation of aminoacyl-tRNAs. Here, we show that the TacT toxin and the TacA antitoxin work as a complex that modulates TacT activity via the acetylation state of TacA. TacT ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 27 شماره
صفحات -
تاریخ انتشار 2013